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ABSTRACT

Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure,
toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays
and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data
available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for
26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to
calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from
previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of
distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK
predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals,
predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction
bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-
estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other
chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were
predicted with reasonable accuracy. The plasma concentration predictions improved when experimental
measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be

Published by Oxford University Press on behalf of the Society of Toxicology 2018.
This work is written by US Government employees and is in the public domain in the US.

1

TOXICOLOGICAL SCIENCES, 2018, 1–18

doi: 10.1093/toxsci/kfy020
Advance Access Publication Date: January 27, 2018
Research Article

Downloaded from https://academic.oup.com/toxsci/advance-article-abstract/doi/10.1093/toxsci/kfy020/4827578
by Environmental Protection Agency Library user
on 23 March 2018

https://academic.oup.com/


applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based
on human health risks.

Key words: toxicokinetics; environmental chemicals; IVIVE.

The report by the National Research Council “Risk Assessment
in the Federal Government” (National Research Council, 1983)
specifies that knowledge of both inherent chemical toxicity and
plausible human or ecological exposure are necessary to deter-
mine the risk posed by a chemical. With the exception of phar-
maceuticals, pesticides, and food additives, most other
chemicals have been subject to minimal testing, resulting in
thousands of chemicals in commerce with little or no toxicity or
exposure data (Breyer, 2009; Egeghy et al., 2012; Judson et al.,
2009). However, the Toxic Substances Control Act, which out-
lines the safety-related requirements for many non-
pharmaceutical chemicals was recently updated by the Frank R.
Lautenberg Chemical Safety for the 21st Century Act. The new
law requires that the U.S. Environmental Protection Agency
identify chemical priorities among these thousands of chemi-
cals, gives the Agency new authority for requesting data when
necessary, and promotes the use of non-animal alternative
methods when demonstrated to be of equivalent or better sci-
entific quality (Congress, 2016).

Toxicokinetics (TK) is a critical component in understanding
toxicological responses by linking chemical exposure to internal
tissue concentrations. High throughput in vitro and in silico
approaches offer a promising approach to estimating the in vivo
TK properties for hundreds of chemicals. The high-throughput
TK (HTTK) methods include in vitro assays that assess metabolic
clearance using in vitro liver systems (i.e., hepatocytes) (Shibata
et al., 2002) and binding to plasma protein (Waters et al., 2008).
These chemical-specific HTTK data (i.e., hepatocyte metabolic
clearance, protein binding) rely on in vitro-to-in vivo extrapola-
tion (IVIVE) to scale the in vitro data and parameterize TK mod-
els of varying sophistication.

IVIVE based upon HTTK methods was developed initially to
assist in the design of human clinical trials for the development
of pharmaceuticals (Jamei et al., 2009; Lukacova et al., 2009;
Wang, 2010). As the only source of TK information for many
chemicals, the accuracy and suitability of HTTK-derived IVIVE
predictions need to be determined for the types of chemicals
found in the environment (Wambaugh et al., 2015; Yoon et al.,
2014). The properties of environmental and industrial chemicals
may vary from pharmaceuticals in important ways that influ-
ence the TK including hydrophobicity and ionization (Feher and
Schmidt, 2003; Lipinski, 2004; Richard et al., 2016; Strope et al.,
2018). An important difference between pharmaceuticals and
non-therapeutic chemicals is that pharmaceuticals in many
cases are designed with the purpose of being absorbed following
oral administration, whereas this is not the case for other
chemicals.

HTTK measurement of hepatocellular clearance and plasma
protein binding allows chemical-specific estimates of two
mechanisms of chemical clearance from the body: hepatic me-
tabolism and passive renal excretion. While the ability of in vitro
hepatocyte assays to predict in vivo hepatic metabolism specifi-
cally has been thoroughly evaluated (Lau et al., 2002; McGinnity
et al., 2004; Obach, 1999; Obach et al., 1997; Shibata et al., 2002;
Wang, 2010), here these two mechanisms are the only available
surrogates for whole body clearance, which includes these and
other clearance processes.

Comparison between in vitro-based HTTK predictions of
in vivo TK and in vivo TK data have shown HTTK to be predictive
of maximal plasma concentration (Cmax) and area under the
plasma concentration time curve (AUC), but that predictions are
biased toward underestimation of total clearance (Sohlenius-
Sternbeck et al., 2012; Wood et al., 2017), resulting in a low (R2

value approximately 0.34) chemical-to-chemical variance
explained in predicted steady-state plasma concentration (Css)
(Wambaugh et al., 2015). Hypotheses for the prediction bias and
lack of explained variance between HTTK predictions and
in vivo values include (1) larger variability due to documented
presence of inter-study variability in chemical TK outputs
across published in vivo studies (Wetmore et al., 2012, 2015) that
are typically conducted on a per chemical basis, (2) underesti-
mation of metabolic clearance in the liver by the use of 4
h incubations with in vitro suspensions of primary hepatocytes
known to have short-lived metabolic capability (Wambaugh
et al., 2015), (3) lack of ability to predict extra-hepatic metabo-
lism because of the use of primary hepatocytes (Wilk-Zasadna
et al., 2015), (4) lack of data to characterize oral absorption
(Fraczkiewicz et al., 2014), and (5) lack of transporter-mediated
movement of chemicals within tissues, particularly the kidney
and liver (Wambaugh et al., 2015). While systems do exist for
understanding the confidence with which IVIVE may be applied
to pharmaceuticals (e.g., Camenisch, 2016), the relative lack of
non-pharmaceutical in vivo data makes systematic evaluation
of the performance on IVIVE difficult (Wambaugh et al., 2015).

Here we report on new, in vivo experiments in rat for 26 non-
pharmaceutical chemicals. The physico-chemical properties of
these chemicals are intended to be more representative of
chemicals that may be present in our environment. The new
experiments included both oral and iv dosing, allowing charac-
terization of oral absorption through estimation of both fraction
absorbed from an oral dose and the rate of absorption. We de-
veloped a uniform TK statistical analysis to estimate relevant
TK parameters (e.g., volume of distribution, rate of elimination)
for both these new TK data as well as data from previously pub-
lished studies. Our systematic analysis generated a library of rat
in vivo estimated TK parameters for 44 chemicals that all have
corresponding in vitro HTTK data for rats. By direct comparison
to rat-specific HTTK predictions for all 44 chemicals, we were
able to address the first 3 of the above hypotheses related to ac-
curacy of IVIVE. Further, we were able to evaluate chemical
structure-based models for oral absorption (Simulations Plus,
2017), steady-state volume of distribution (Pearce et al., 2017a;
Poulin and Theil, 2009; Schmitt, 2008), and expected accuracy of
IVIVE methods (Wambaugh et al., 2015). By directly comparing
TK estimated using rat-specific, in vitro HTTK with rat in vivo
data, we aim to estimate if and when HTTK methods might be
expected to work well for humans and when they might fail.

MATERIALS AND METHODS

We illustrate our study design in Figure 1: a single, harmonized
approach was used for all chemicals. Plasma concentration
time course data collected from in vivo rat studies were obtained
from 3 sources: (1) new experiments conducted by the National
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Health and Environmental Effects Research Laboratory
(NHEERL) of the U.S. EPA, (2) the RTI International (RTI), and (3)
previously published studies curated from the peer-reviewed lit-
erature as summarized in Wambaugh et al. (2015). Twenty
chemicals were tested by NHEERL and eight by RTI using a har-
monized testing protocol. Processed data and models are pro-
vided in R package “httk” (Pearce et al., 2017b) version 1.8
(https://cran.r-project.org/web/packages/httk/; last accessed
February 5, 2018). Raw data (doi: 10.5061/dryad.32v7b), graphs,
and analysis scripts are available as Supplementary Material.

Chemicals. Newly studied chemicals are those listed in Table 1
with either RTI or NHEERL as sources. There were two chemicals—
bensulide and propyzamide—analyzed by both RTI and NHEERL.
NHEERL performed experiments on 20 chemicals, all of which
were supplied by Chem Service (West Chester, PA) except for tri-
closan, which was from Sigma Aldrich (St. Louis, MO). Chemical
purity was greater than 97% (listed by manufacturer). Kolliphor EL
and glycerol were bought from Sigma-Aldrich. Ethanol (200 proof)
was purchased from Decon Laboratories (King of Prussia, PA).
Heparin was obtained from Henry Schein (Melville, NY).

RTI performed experiments on 8 chemicals all of which were
supplied by Sigma Aldrich, with the exception of pyrithiobac so-
dium and diazoxon, which were obtained from Crescent Chemical
Co (Islandia, NY). Dose vehicle ingredients used at RTI included
ethanol (Decon Laboratories) Cremophor (Sigma Aldrich) and PBS
(Amresco).

Non-labelled internal standards (Isoxaben and 2-methyl-4-
chlorophenoxyacetic acid, MCPA) and all calibration standards
were purchased from Sigma-Aldrich with the exception of the
standard of S-bioallethrin, which was purchased from Crescent
Chemical. Some calibration standards (bensulide, formetanate
hydrochloride, and propamocarb) were also used as non-
labelled internal standards when appropriate. Stable isotope-
labelled internal standards (13C12-bisphenol A, 13C6-carbaryl,
phenoxy-13C6-cis-permethrin, 13C12-triclosan) were purchased
from Cambridge Isotope Laboratories (Tewksbury, MA) except
13C2-perfluoro-n-octanoic acid (PFOA) was obtained from
Wellington Laboratories (Guelph, Ontario, Canada).

Dichloromethane, ethyl acetate, and methanol were purchased
from VWR International (Radnor, PA).

Animals. Adult male Sprague-Dawley rats (ca. 350 g) were
obtained from Charles River Laboratories (Raleigh, NC). Rats were
received with a jugular vein catheter (JVC) surgically implanted by
the vendor. Rats were housed in a facility accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care. All procedures with animals were approved by the
Institutional Animal Care and Use Committee for each facility
(U.S. EPA/NHEERL, RTI International). Animals were housed indi-
vidually in plastic box cages with pine shaving bedding and pro-
vided feed (Purina Rodent Chow 5001, LabDiet, Richmond, IN) and
autoclaved tap water ad libitum. Animals were acclimated to the
facility for at least 4 days before dosing and were weighed daily.

Animals for studies conducted at RTI were housed singly in
polycarbonate cages with Sanichips bedding (PJ Murphy Forest
Products, Montville, NJ) and stainless steel wire lids that accom-
modate a water bottle and feed. Rats were offered Purina 5001
feed and water (Durham City, NC) from a reverse osmosis system
ad libitum. Rats were received 1–2 days following JVC surgery and
were acclimated to the facility for 4 days prior to dosing.

Treatment. Before chemical administration, blood (0.3 ml) was
removed from each rat via the catheter. Saline (0.3 ml) was then
infused into the catheter followed by 0.05 ml of glycerol/saline
(1:9, v/v) containing 10% heparin (i.e., lock solution). Animals
were either administered chemical by oral gavage (5 ml/kg) or
intravenously (1 ml/kg) via the tail vein. For the new studies,
two chemical-specific doses (one each for the oral and iv routes)
were back-calculated to span the range of ToxCast bioactive
concentrations and are reported in Table 1. Three to four ani-
mals were treated per group. For most of the chemicals, the ve-
hicle was ethanol/Kolliphor/saline (10:30:60; v/v/v). For water
soluble chemicals, the vehicle was saline. After oral administra-
tion, blood (0.3 ml) was removed via the catheter at 15 and
30 min and 1, 2, 4, 8, 12, 24, 48, and 72 h. After intravenous ad-
ministration, blood (0.3 ml) was removed via the catheter at 5,
10, and 30 min and 1, 2, 4, 8, 12, 24, 48, and 72 h. For both

Figure 1. Overview of experiments and analysis. We collected new TK data and jointly analyzed that data with literature data in order to evaluate 4 key issues in IVIVE.

Predictions of oral absorption, volume of distribution, clearance, and uncertainty were all evaluated. Data were modeled with both 1- and 2-compartment models

(Figure 2) and if the 2-compartment model was selected, the volumes of the 2 compartments were added to make a volume of distribution and the rate for the second

(elimination) phase was used as kelim.
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administration routes, after removing blood, 0.3 ml of saline
was infused into the catheter followed by 0.05 ml of lock solu-
tion. All blood samples were transferred to MicrotainerVR tubes
(Becton, Dickinson and Company, Franklin, NJ) and placed in
ice. Blood was separated into plasma and red blood cells by
spinning the tubes in a microcentrifuge at 9000 rpm for 15 min
at 4�C. Plasma was transferred to cryo tubes and stored at �80�C
until analyzed for chemical concentration.

Analysis of chemical concentrations. For samples analyzed at EPA,
plasma samples were stored at �80�C. All analytes of interest

were extracted from plasma thawed to room temperature by us-
ing supported liquid extraction (SLE) (Isolute SLEþplate,
Biotage, Charlotte, NC), except for triclosan, which was
extracted by phospholipid depletion (PLD) (Isolute PLDþplate,
Biotage, Charlotte, NC). Plasma (50 ml) was diluted 1:4 with
buffer, spiked with internal standard (Supplementary Table 1)
for a plasma concentration of 50 ng/mL, vortexed at 2500 rpm
for 2 min and applied to the extraction plate. After 5 min, sam-
ples were eluted to a collection plate with 1 ml of extraction sol-
vent under gravity flow for 5 min followed by 2 min vacuum.
Diluents and extraction solvents used by the EPA lab are given

Table 1. Chemicals Tested

Compound Abbrev. CAS DSSTox Source Oral Dose(s) (mg/kg BW) Iv Dose(s) (mg/kg BW)

2, 4-D 2, 4D 94-75-7 DTXSID0020442 2 1 0.2, 0.21
Alachlor Alac 15972-60-8 DTXSID1022265 2 5.2, 5.3 1, 0.97
Alprazolam Alpr 28981-97-7 DTXSID4022577 3 7, 12 1.2
Antipyrine Anti 60-80-0 DTXSID6021117 3 NA 15
Bensulide Bens 741-58-2 DTXSID9032329 1, 2 5.3, 5.1, 5.2, 5 1, 0.98
Bensulide Bens 741-58-2 DTXSID9032329 1 5 1
Bensulide Bens 741-58-2 DTXSID9032329 2 5.3, 5.1, 5.2 1, 0.98
Bisphenol A BPA 80-05-7 DTXSID7020182 1 3 0.6
Boscalid Bosc 188425-85-6 DTXSID6034392 1 5 1
Bosentan Bose 147536-97-8 DTXSID7046627 3 1 10
Carbaryl Cbyl 63-25-2 DTXSID9020247 1 5 1
Carbendazim Cbzm 10605-21-7 DTXSID4024729 3 1000 NA
Chloridazon Cdzn 1698-60-8 DTXSID3034872 2 4.2, 4.1 0.73, 0.83, 0.85
Chlorpyrifos Cpfs 2921-88-2 DTXSID4020458 3 5, 10, 50, 100 NA
Cyclanilide Cycl 113136-77-9 DTXSID5032600 1 1 0.2
Cyclosporin A CycA 59865-13-3 DTXSID0020365 3 NA 5.9, 6
Diazinon-o-analog Diaz 962-58-3 DTXSID5037523 2 5, 5.1 1, 0.99, 1.1
Diclofenac Dicl 15307-86-5 DTXSID6022923 3 18 NA
Diltiazem Dilt 42399-41-7 DTXSID9022940 3 20 20
Dimethenamid Dime 87674-68-8 DTXSID4032376 1 5 1
Etoxazole Etox 153233-91-1 DTXSID8034586 1 2 0.4
Fenarimol Fena 60168-88-9 DTXSID2032390 1 2 0.4
Flufenacet Fluf 142459-58-3 DTXSID2032552 2 5.3, 5.2, 5.1 0.99, 0.98, 1
Formetanate hydrochloride Form 23422-53-9 DTXSID4032405 1 5 1
Hexobarbitone Hexo 56-29-1 DTXSID9023122 3 NA 60
Ibuprofen Ibup 15687-27-1 DTXSID5020732 3 NA 2.5, 25
Imazalil Imaz 35554-44-0 DTXSID8024151 1 5 1
Imidacloprid Imid 138261-41-3 DTXSID5032442 1 5 1
Imipramine Imip 50-49-7 DTXSID1043881 3 50 10
Metoprolol Meto 51384-51-1 DTXSID2023309 3 20 NA
Midazolam Mida 59467-70-8 DTXSID5023320 3 15 5
Nilvadipine Nilv 75530-68-6 DTXSID2046624 3 10 0.1
Novaluron Nova 116714-46-6 DTXSID5034773 1 2 0.4
Ondansetron Onda 99614-02-5 DTXSID8023393 3 4, 8, 20 1, 4, 8, 20
Perfluorooctanoic acid PFOA 335-67-1 DTXSID8031865 1 1 0.2
Permethrin Perm 52645-53-1 DTXSID8022292 1 5 1
Phenacetin Pacn 62-44-2 DTXSID1021116 3 NA 23
Phenytoin Pytn 57-41-0 DTXSID8020541 3 25 40, 25
Propamocarb hydrochloride Prop 25606-41-1 DTXSID6034849 1 5 1
Propyzamide Prpy 23950-58-5 DTXSID2020420 1, 2 3.2, 3.1, 3 0.6, 0.61
Propyzamide Prpy 23950-58-5 DTXSID2020420 1 3 0.6
Propyzamide Prpy 23950-58-5 DTXSID2020420 2 3.2, 3.1 0.6, 0.61
Pyrithiobac sodium Pyri 123343-16-8 DTXSID8032673 2 1 0.21, 0.2, 0.19
Resmethrin Resm 10453-86-8 DTXSID7022253 1 4 0.8
S-Bioallethrin S-Bi 28434-00-6 DTXSID2039336 1 4 0.8
Simazine Sima 122-34-9 DTXSID4021268 1 2 0.4
Tolbutamide Tolb 64-77-7 DTXSID8021359 3 20 10
Triclosan Tric 3380-34-5 DTXSID5032498 1 NA 1
Valproic acid Valp 99-66-1 DTXSID6023733 3 200, 600 10, 50, 100

Sources: NHEERL,1 RTI,2 and peer-reviewed literature summarized in Wambaugh et al. (2015).3
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in Supplementary Table 1. For the PLD extraction, plasma sam-
ples (50 ml) were applied to wells that were pretreated with
350 ml acetonitrile with 0.1% formic acid. (Thermo Fisher
Scientific, Waltham, MA) The plate was vortexed (1 min) and
then vacuum was applied (�0.2 bar, 5 min). For both extraction
methods, samples were evaporated to dryness under nitrogen
(40�C) and reconstituted in 100 ml 20:80 (v/v) methanol: water
with 0.1% formic acid and 4 mM ammonium formate (Sigma-
Aldrich, St. Louis, MO). A matrix-matched blank and matrix-
matched blank spike (25 ng/mL) were included with each extrac-
tion batch for quality control. Matrix-matched calibration curve
standards were extracted in the same manner. The controls and
calibration curves were prepared in control plasma from male
Sprague Dawley rats (BioreclamationIVT, Chesterton, MD). The
calibration range was 1–500 ng/ml.

Extracts were analyzed by liquid chromatography/tandem
mass spectrometry (LC/MS/MS) with electrospray ionization in
positive or negative ion mode and MRM (multiple reaction mon-
itoring) on a Thermo Electron (West Palm Beach, FL) Surveyor
chromatograph and TSQ Quantum Ultra AM triple quadrupole
mass spectrometer or a Shimadzu (Columbia, MD) Prominence
chromatograph and AB Sciex (Framingham, MA) 4000 QTrap lin-
ear ion trap mass spectrometer. Instrument source parameters
and compound-specific tuning parameters are given in
Supplemental Table 2. Chromatographic separation was
achieved with gradient elution (20% B to 28% B over 4 min) and a
Kinetex XB-C18 column (30 � 2.1 mm, 2.6 mm) (Phenomenex,
Torrance, CA). Mobile phases ([A] water and [B] methanol) both
had 0.1% formic acid and 4 mM ammonium formate additives.
The injection volume was 20 ml and the flow rate was 300 ml/
min.

For samples analyzed at RTI, (Supplemental Table 3) plasma
was thawed on ice and aliquots (25ml) were mixed with 5 ml of
methanol and 100 ml of ice-cold methanol containing 100 ng/ml
of internal standard (Supplemental Table 4); isoxaben for posi-
tive ionization methods and MCPA for negative ionization.
Samples were vortexed (5 s on a Vortex Genie 2 at maximum
speed) and centrifuged at 16,000 g for 3 min in a VWR
Microcentrifuge. Supernatant (100 ml) was mixed with 100 ml of
mobile phase (0.1% formic acid in water or 10 mM NH4OAc).
Samples (10 ml) were analyzed by LC-MS/MS. Standard curves
and QC samples were prepared similarly by mixing 5 ml of meth-
anol containing a known amount of test article (instead of 5 ml
methanol only) to 25 ml plasma and processing as described
above for samples. Analyses were conducted by LC-MS on an
API 4000 (Applied Biosystems, Foster City, CA) triple quadrupole
mass spectrometer system with an Agilent, Santa Clara, CA
1100 LC system, and a reverse-phase column Restek, Bellefonte,
PA Ultra C18 (50 � 2 mm, 5 lm) with C18 guard cartridge (flufe-
nacet, bensulide, propyzamide) in positive ion mode, with a gra-
dient of 0.1% formic acid and methanol at a flow rate of 0.3 mL/
min, and an injection volume of 10 ml. 2, 4-D was analyzed with
the same system in negative ion mode, with a mobile phase of
0.1% acetic acid and 10 mM ammonium acetate in water and
methanol. For the remaining compounds (chloridazon, diazo-
xon, imipramine, pyrithiobac sodium, and alachlor), an API 5000
(Applied Biosystems) triple quadrupole system was used with a
Waters, Milford, MA Aquity UPLC system. A Phenomenex
Synergi Hydro-RP (50 � 2 mm, 4 mm) with C18 guard cartridge
eluted with a gradient of 0.1% formic acid in water and metha-
nol was used for chloridazon, diazoxon, and imipramine. The
analysis of chemical concentration was conducted in the posi-
tive ion mode. A Waters Acquity UPLC HSS C18 (2.1 � 5 mm,
1.8 mM) with C18 guard cartridge column was used for

pyrithiobac sodium and alachlor. Instrument and compound
parameters for RTI are given in Supplemental Tables 5–8.

Literature in vivo TK data. Various strains of rat TK data were
collected from peer-reviewed literature by Netherlands
Organisation for Applied Scientific Research and reported in
Wambaugh et al. (2015) for 26 chemicals. Of those chemicals,
data for one chemical were entirely from subcutaneous expo-
sure and were omitted. Four other chemicals did not have any
in vitro HTTK data available (see below). Two additional chemi-
cals had some in vitro HTTK data, but did not have a successful
plasma protein binding measurement, meaning that no tissue
partitioning could be predicted. Thus, only 19 of the 26 chemi-
cals were analyzed here.

High throughput toxicokinetics in vitro data. In vitro data for ToxCast
Phase I compounds collected using rat hepatocytes and plasma
protein previously reported in Wetmore et al. (2013). Intrinsic
hepatocyte metabolic clearance (Clint) was measured using a
substrate depletion approach observing parent chemical loss in
the presence of cryopreserved rat primary hepatocytes during a
4 h incubation. Hepatocytes were from a four donor pool de-
rived from male Wistar Hannover rats. Hepatocellular metabo-
lism by both phase I and phase II enzymes was characterized
for 7-ethoxycoumarin and 7-hydroxycoumarin and found to be
within acceptable historical ranges. Fraction unbound in
plasma (plasma protein binding, fup) was measured using Rapid
Equilibrium Dialysis (RED) (Waters et al., 2008) with male Wistar
rat plasma. Chemical-specific analytical chemistry methods
were developed to quantify changes in concentrations. All
in vitro TK data were obtained from the R package “httk” v1.8
(Pearce et al., 2017b). Chemicals for which fup was below the
limit of detection are withheld from some analyses since fup is
an important parameter for predicting chemical partitioning
into tissue (Pearce et al., 2017a).

Prediction of toxicokinetics. The R package “httk” version 1.8 was
used to predict clearance, volume of distribution (Vd), Cmax, and
AUC based upon in vitro measured fup and Clint, and physico-
chemical properties. All in vitro values and physico-chemical
properties used are provided in Supplementary Table 10 (doi:
10.5061/dryad.32v7b). Steady-state Vd was predicted as in Poulin
and Theil (2009) using a modified version of Schmitt’s method
(Schmitt, 2008), wherein the total volume of distribution was
calculated as the sum of tissue-specific partition coefficient pre-
dictions weighted by the species appropriate tissue volumes
(Pearce et al., 2017b; Poulin and Theil, 2009). Each tissue-specific
partition coefficient (except red blood cells) was calibrated
through comparison to a library of in vivo measured partition
coefficients (Pearce et al., 2017a). Physico-chemical properties
were obtained from literature and predicted using EPA’s
Estimation Program Interface (EPI) Suite version 4.10 (USEPA,
2015) for most parameters except pKa which was predicted us-
ing ChemAxon (ChemAxon, 2015; Strope et al., 2018).

The orally bioavailable fraction of dose (Fbio) was predicted
using GastroPlusTM version 9.5 (Simulations Plus). Replicating
the in vivo scenario, models were built assuming a solution was
given orally to a 0.25 kg fed rat using the GastroPlus PBPK model.
A single oral dose was assumed from Table 1, with the smallest
integer oral dose used if multiple given. The GastroPlus default
in silico parameters were used (e.g., physico-chemical properties,
fup, renal clearance (fup* glomerular filtration rate), metabolic
clearance (3A4HLM_othersrCYP). Models were run for 72 h and
Fbio reported.

WAMBAUGH ET AL. | 5

Downloaded from https://academic.oup.com/toxsci/advance-article-abstract/doi/10.1093/toxsci/kfy020/4827578
by Environmental Protection Agency Library user
on 23 March 2018

https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy020#supplementary-data
Deleted Text: &hx00B5;L
Deleted Text: L
Deleted Text: -
Deleted Text: L
Deleted Text:  
Deleted Text: -
Deleted Text: L
Deleted Text:  
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy020#supplementary-data
Deleted Text: x
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: L
Deleted Text: L
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy020#supplementary-data
Deleted Text: &hx00B5;L
Deleted Text: L
Deleted Text: L
Deleted Text:  
Deleted Text: L
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy020#supplementary-data
Deleted Text: econds
Deleted Text:  
Deleted Text: utes
Deleted Text: &hx00B5;L
Deleted Text: L
Deleted Text: L
Deleted Text: L
Deleted Text: L
Deleted Text: L
Deleted Text:  
Deleted Text: x
Deleted Text: L
Deleted Text: x
Deleted Text: x
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy020#supplementary-data
Deleted Text: i
Deleted Text: i
Deleted Text: four
Deleted Text: our
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy020#supplementary-data
Deleted Text: (
Deleted Text: )
Deleted Text: rs


Statistical analysis of toxicokinetic in vivo data. TK model parame-
ters were estimated for each chemical using a single uniform
statistical analysis method developed in the open source R
statistical language v3.2.5. The analysis software, a custom de-
veloped R package “invivoPKfit,” is available as Supplementary
Material. All concentration time-course data are available in
Supplementary Table 9 (doi: 10.5061/dryad.32v7b). The time-
course data and summary values (e.g., time-integrated area
under the plasma concentration curve, AUC) are available from
the public R package HTTK version 1.8 in tables “chem.invivo.PK.
data,” “chem.invivo.PK.aggregate.data,” and “chem.invivo.PK.
summary.data.”

Each chemical was initially modeled using non-
compartmental analysis using the R package “PK” (Jaki and
Wolfsegger, 2011). All concentration data was normalized by
dose. A “batch” analysis was conducted allowing for different
studies with the same route of exposure to be analyzed jointly,
however the oral and iv routes had to be analyzed separately.
Vd and kelim were determined from the iv data, while Fbio was
determined as the ratio of the oral AUC to the iv AUC.

Compartmental model analysis allowed data from both iv and
oral doses to be jointly analyzed, when data from both routes was
available. As in Figure 2, for orally dosed animals the dose was
modeled as first entering the gut, from which a fraction Fbio of the
total dose was being absorbed with rate kgutabs for the orally dosed
animals, while the iv animals were modeled with the total dose
appearing in the central compartment at time zero. If no oral dos-
ing data were available, only quantities that can be estimated
from iv dosing were estimated (e.g., Vd, kelim) while absorption rate
and bioavailability were not estimated.

Parameters were estimated by maximizing a likelihood func-
tion that assumed that the data were log-normally distributed
around the concentrations predicted by the TK model (Cox and
Hinkley, 1979). Each data source and chemical was assigned its
own standard deviation (r) for log-normally distributed mea-
surement error, such that a chemical with data from two sour-
ces would have two separate standard deviations estimated.
Confidence intervals on the estimated parameters were calcu-
lated using the Hessian of the likelihood function to estimate
standard deviations of the log parameter (Bartlett, 1953a,b).
Standard deviations sd around the optimized parameters are
reported in Supplementary Table 10 (doi: 10.5061/dryad.32v7b)
and remain on the log scale—a 95% confidence interval may be
calculated as elnx�1:97�sd; elnxþ1:97�sd

� �
. Because the log of the pa-

rameter was optimized, both arithmetic and geometric means
and standard deviations could be calculated, but only geometric
means and standard deviations are reported.

Both a 1-compartment and a 2-compartment TK model
(Figure 2) were investigated for each chemical. For the 2-com-
partment model, the standard deviation for parameters that
were composites of multiple estimated parameters (e.g., Vd)
was calculated by adding the squares of the fractional standard
deviations and taking the square root (i.e., quadrature). Both the
1- and 2-compartment models included a separate “gut” com-
partment from which oral doses were absorbed through a first-
order process characterized by the rate kgutabs. To estimate bio-
availability, only a fraction, 0< Fbio< 1, of orally administered
doses was absorbed from the gut compartment.

For an oral dose, the 2-compartment model allows for three
phases of TK: absorption, distribution to tissues (rate

a¼ 1
2 k12þkelimþk21ð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12þkelimþk21ð Þ2�4k21ke

q� �
), and elimi-

nation (rate b¼ 1
2 k12þkelimþk21ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12þkelimþk21ð Þ2�4k21ke

q� �
)

(O’Flaherty, 1981). The b rate is the effective steady-state elimi-
nation rate for the 2-compartment model. The 1-compartment
model describes an oral dose with only absorption and elimi-
nation phases (steady-state elimination rate is given purely by
kelim). For either model, iv doses have no absorption phase.

The R package optimx (Nash, 2014; Nash and Varadhan, 2011)
version 2013.8.7 was used to perform a bounded optimization of
the likelihood function using the method “L-BFGS-B” that imple-
ments the bounded (i.e., limits on lower and upper values) ap-
proach (Byrd et al., 1995). The log-transformed parameters were
estimated. Rates kgutabs and kelim were estimated with an upper
bound of 1000 l/h (i.e., very fast). Fractions were estimated with an
upper limit of 1. Volumes of distribution were estimated using a
lower bound of 0.01 l. The 2-compartment model was optimized
using the slopes of the distribution phase (a) and elimination
phase (b) which was re-parameterized in terms of the ratio of a to
kelim (Ra: kelim) and ratio of b to a (Fbofa) with the constraints that Ra:

kelim > 1 and 0< Fbofa< 1. The steady-state volume of distribution
for the 2-compartment model was calculated as Vd ¼ V1 þ V2

¼ V1 1þ k12
k21

� �
(Obach et al., 2008).

Given how we have parameterized our empirical TK models,
elimination rate (kelim) is directly estimated and clearance (CLtot,

Figure 2. Both the empirical 1- and 2-compartment models were investigated for

each chemical time course. A single set of model parameters were optimized to de-

scribe all available plasma concentration data (i.e., simultaneously for both oral and

intravenous doses and for all data sources). Fbio is the fraction (between 0 and 1) of

the oral dose that is absorbed at a rate of kgutabs into the primary compartment.

Intravenous doses are added to the intravenous compartment at time 0. Vd is

the volume of distribution in the 1-compartment model, and Vd ¼ V1 þ V2 for the

2-compartment model. Elimination (e.g., metabolic, renal) is characterized by the

rate kelim.
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L/h/kg BW) must be calculated as the product of kelim and Vd. In
vitro HTTK predicts CLtot as a combination of hepatic metabo-
lism and passive glomerular filtration in the kidneys (Pearce
et al., 2017b).

Initial values for the optimizer were chosen using the in vivo
data. For both the 1- and 2-compartment models, Vd was deter-
mined from the maximum iv concentration and dose (while the
new experiments were conducted with a single dose for the oral
and iv groups, the literature data sometimes contained multiple
dose groups per route). Initial estimates of rates were determined
by regression of the concentration data on time. To determine al-
pha (distribution) and beta (elimination) phase rates for the 2-
compartment model, the data were divided in half by time and
separate regressions were performed to get initial values. Fbio was
initialized whenever oral and iv data were available using the
maximum concentrations and doses, and was initially set to 0.5
otherwise. kgutabs was always initially set to 10.

All observations within a factor of two of the limit of quantita-
tion were treated as “censored.” Any prediction below twice the
limit of quantitation added the cumulative distribution from zero
to the limit to the likelihood. If the limit of quantitation was un-
known, it was assumed to be 45% of the lowest observed value.

The optimized likelihood for both the 1- and 2-compartment
models were compared using the Akaike Information Criterion
(AIC) (Akaike, 1974). Study-specific standard deviations were in-
cluded in the number of parameters used to calculate AIC (e.g.,
if there were data from two studies, there were two standard
deviation parameters estimated and factored into the AIC). The
model with the lesser AIC was always selected (Burnham and
Anderson, 2003).

Determination of TK summary statistics from in vivo data. Summary
statistics for TK prediction from in vitro data (e.g., AUC and max-
imal plasma concentration, Cmax) were calculated using the
function “solve_pbtk” within the R package “httk” (Pearce et al.,
2017b). For each chemical with new in vivo data (as opposed to
the literature studies) there were at least three biological repli-
cates. For the purpose of summary statistics only, at each time
point all replicates with plasma concentrations above the limit
of detection were averaged. The peak plasma concentration
(Cmax) was determined as the maximum average measured con-
centration at any time. The time-integrated plasma concentra-
tion (area under the curve or AUC) was determined using the
trapezoid rule, summing the product of each time interval be-
tween measurements by the average concentration at the time
points. Css was calculated for a 1 mg/kg/day dose rate using the
estimated total clearance: Css ¼ 1mg=kg BW=day � 24h

Vd�kelim
.

Regressions were performed using the R base function “lm”
on the log-transformed data. R2 and mean-squared error (MSE)
are reported as calculated by “lm.” When standard deviation
estimates were available, each observation was weighted using
1

sd2. Observations without standard deviation estimates were
omitted from weighted regressions.

RESULTS

New In Vivo TK Parameter Estimates
Here we report in vivo rat TK data and in vitro–based TK predic-
tions for 45 compounds to evaluate IVIVE methods for TK. The
chemicals studied are summarized in Table 1. New in vivo data
were collected for 26 non-pharmaceutical compounds; these
chemicals were selected to represent the diversity of chemicals
that may be present in the environment (e.g., pesticides and

plasticizers), in contrast to the pharmaceutical compounds for
which IVIVE has been more commonly evaluated.

For each chemical a non-compartmental analysis was per-
formed to identify data issues. The data for formetanate hydro-
chloride was found to be too noisy for non-compartmental or
other analysis. For each of the other chemicals (44 of 45) a single
set of parameters for both compartmental models (Figure 2) was
optimized to maximize the likelihood of all concentration time-
course data for both routes of exposure (if available) and all
doses (some literature studies included multiple doses). We
note that in the models the bioavailability Fbio is simply a frac-
tion that multiplies the oral dose to (potentially) reduce how
much of the chemical is available systemically. Since the model
parameters are estimated empirically from in vivo data, the esti-
mated Fbio reported here includes multiple absorption processes
as well as first-pass metabolism. For each chemical we used the
AIC (Akaike, 1974) to select the more likely of the one- or 2-com-
partment models. Triclosan and bisphenol A were rapidly me-
tabolized (Doerge et al., 2010), making the oral data on parent
compound unsuitable for bioavailability analysis.

Table 2 lists the values estimated for any TK parameters
(e.g., Vd, kelim) that could be estimated. Thirty chemicals (19
nonpharmaceuticals) are better described by the 2-compart-
ment model, while 14 (10 nonpharmaceuticals) are better de-
scribed by the 1-compartment model. Time-course plots and
model fits are provided in Supplementary Figures 1 and 2. In
Supplementary Figure 1 (1-compartment model) the in vitro pre-
dicted concentration time course is provided, but as we do not
have predictors for 2-compartment parameters no such predic-
tions are provided in Supplementary Figure 2.

As described in the Methods, a numerical approximation to
the Hessian of the data likelihood function was used to estimate a
standard deviation for each parameter. The standard deviation
provides an estimate of the confidence or certainty in the parame-
ter value (i.e., larger standard deviations indicate lesser confi-
dence). However, calculating the numerical Hessian failed for
some chemicals and parameters, meaning that no estimate of
standard deviation could be obtained. Failure likely indicates that
the estimated parameter value has not uniquely maximized the
likelihood. Thus we have instances where the data are clearly bi-
phasic (at least requiring a 2-compartment model) but the data
are insufficient to “identify” the specific parameter values (Garcia
et al., 2015). We have therefore performed analyses in two ways:
using all parameter estimates (ignoring estimated standard devia-
tion), and weighting the estimates by the standard deviation
(omitting those chemicals for which the estimate failed, which are
likely to be more uncertain estimates). All properties, parameter
estimates and log-scale standard deviations are included in
Supplementary Table 10 (doi: 10.5061/dryad.32v7b).

In Figure 3, we show the diversity of physico-chemical prop-
erties (a mix of estimated and in silico predicted values from EPI
Suite, USEPA, 2015), in vitro measured HTTK parameters, and TK
parameters estimated from in vivo data. Each property was
scaled by the standard deviation across the chemicals and cen-
tered by subtracting the mean such that the values indicated by
intensity in Figure 3 indicate the number of standard deviations
above or below the mean for the 38 chemicals. The bar on the
left-hand side of Figure 3 indicates pharmaceuticals (gray) and
all other chemicals (black). Hierarchical clustering was used to
minimize the Euclidean distance between adjacent pairs of
chemicals. This clustering approach is intended to group chemi-
cals with similar properties; however, other than grouping
chemicals based upon ionization state (acid, base, or neutral) at
the pH of plasma (i.e., pH 7.4), no discernable pattern in the TK
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properties emerges. The pharmaceutical chemicals appear to be
dispersed among the other chemicals; that is, there is no obvi-
ous distinction between pharmaceutical and non-
pharmaceutical chemicals. This indicates that simple models
based upon physico-chemical or even in vitro measured proper-
ties may be inadequate for predicting any differences in TK be-
tween pharmaceuticals and nonpharmaceuticals.

The new in vivo experiments were conducted in two separate
laboratories (NHEERL and RTI), with two common chemicals be-
tween the labs: propyzamide and bensulide. The data from the
two laboratories was analyzed separately (indicated by the post-
fix “.NHEERL” and “.RTI” in Figure 3) and jointly (indicated by

“.Joint”). Both chemicals cluster together indicating similarity,
although the clustering algorithm considers physico-chemical
properties and in vitro HTTK data in addition to estimated TK
parameters (i.e., the chemicals are already similar due to shared
properties). The analytical chemistry for these two chemicals
was more sensitive in the RTI laboratory, leading to more
(lower) concentrations measured at later time points. For propy-
zamide, the estimated parameters are very consistent between
the two labs for Vd, kelim, kgutabs, and Fbio. For bensulide, the con-
centrations measured by the two labs appear to be described by
a 2-compartment model, and overlap in the alpha phase.
However, there are relatively few points in the beta phase for

Table 2. Toxicokinetic Model Parameters Estimated From In Vivo Data

Compound Source Selected Model Vd (l/kg BW) kelim (l/h) CLtot (l/kg BW/h) kgutabs (l/h) Fbio Css (mg/l)

2, 4-D 2 1 compartment 1.2 0.66246 0.77 0.23 1.00 1.3043
Alachlor 2 2 compartment 297.7 0.17479 52.04 22.54 0.03 0.0006
Alprazolam 3 1 compartment 3.6 2.43931 8.85 0.86 0.35 0.0400
Antipyrine 3 2 compartment 1.9 0.11394 0.22 NA NA NA
Bensulide 1, 2 2 compartment 3.3 0.36161 1.19 3.07 0.05 0.0447
Bensulide 1 1 compartment 2.7 1.29619 3.45 1.24 0.01 0.0027
Bensulide 2 2 compartment 11.7 0.20080 2.34 23.52 0.03 0.0112
Bisphenol A 1 2 compartment 0.3 2.51355 0.75 NA NA NA
Boscalid 1 2 compartment 46.2 0.01977 0.91 2.18 0.25 0.2750
Bosentan 3 1 compartment 2.9 0.48757 1.43 0.86 0.41 0.2839
Carbaryl 1 2 compartment 65.4 1.34717 88.15 11.77 0.31 0.0035
Carbendazim 3 1 compartment NA 0.36656 NA 0.80 NA NA
Chloridazon 2 1 compartment 9.0 0.57641 5.19 0.47 1.00 0.1925
Chlorpyrifos 3 2 compartment NA 0.22851 NA 0.58 NA NA
Cyclanilide 1 2 compartment 1.2 0.00319 0.00 2.96 0.31 81.2312
Cyclosporin A 3 2 compartment 2.0 0.08208 0.16 NA NA NA
Diazinon-o-analog 2 1 compartment 2.6 0.19529 0.50 1.92 0.70 1.4054
Diclofenac 3 2 compartment NA 0.09625 NA 418.30 NA NA
Diltiazem 3 2 compartment 4.3 0.32378 1.39 100.87 0.17 0.1225
Dimethenamid 1 1 compartment 299.2 0.04606 13.78 102.34 0.06 0.0040
Etoxazole 1 2 compartment 27.6 0.05884 1.63 1.52 1.00 0.6143
Fenarimol 1 2 compartment 6.5 0.26673 1.72 2.19 0.25 0.1480
Flufenacet 2 2 compartment 24.3 0.13086 3.18 29.13 0.06 0.0198
Hexobarbitone 3 2 compartment 0.5 1.89165 0.89 NA NA NA
Ibuprofen 3 2 compartment 0.5 0.26688 0.12 NA NA NA
Imazalil 1 1 compartment 16.0 0.79373 12.67 5.19 0.00 0.0002
Imidacloprid 1 1 compartment 4.7 0.08384 0.39 1.80 1.00 2.5566
Imipramine 3 2 compartment 68.5 0.02233 1.53 1.36 0.26 0.1694
Metoprolol 3 2 compartment NA 1.21368 NA 1000.00 NA NA
Midazolam 3 1 compartment 2.9 1.74579 5.10 0.78 0.11 0.0217
Nilvadipine 3 2 compartment 12.0 0.24032 2.89 4.97 0.15 0.0520
Novaluron 1 2 compartment 49.3 0.00184 0.09 0.24 1.00 11.0061
Ondansetron 3 2 compartment 0.1 1.55383 0.22 352.00 0.10 0.4418
Perfluorooctanoic acid 1 2 compartment 1.4 0.00034 0.00 2.19 1.00 2162.1954
Permethrin 1 2 compartment 432.8 0.03278 14.19 1.80 1.00 0.0704
Phenacetin 3 2 compartment 1.0 0.75998 0.75 NA NA NA
Phenytoin 3 2 compartment 13.8 0.00078 0.01 1000.00 0.30 27.5119
Propamocarb hydrochloride 1 1 compartment 8.5 2.44657 20.81 12.69 0.01 0.0004
Propyzamide 1, 2 2 compartment 21.2 0.19670 4.18 1.88 1.00 0.2393
Propyzamide 1 2 compartment 17.8 0.13389 2.38 2.74 1.00 0.4195
Propyzamide 2 1 compartment 22.8 0.15108 3.44 0.58 1.00 0.2905
Pyrithiobac sodium 2 2 compartment 1.8 0.28906 0.53 1.99 1.00 1.8774
Resmethrin 1 2 compartment 373.9 0.02484 9.29 1.73 1.00 0.1076
S-Bioallethrin 1 2 compartment 46.5 0.30404 14.13 4.18 0.12 0.0082
Simazine 1 1 compartment 2.7 3.28457 8.97 1.27 0.05 0.0054
Tolbutamide 3 1 compartment 0.2 0.19710 0.03 6.20 1.00 29.7101
Triclosan 1 1 compartment 7.2 2.71699 19.68 NA NA NA
Valproic acid 3 2 compartment 0.2 0.58264 0.13 453.08 1.00 7.5408

Sources: NHEERL,1 RTI,2 and peer-reviewed literature summarized in Wambaugh et al. (2015).3
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the RTI data and none for NHEERL data set, leading to disagree-
ment, for example, on the estimates for Vd and kelim. This is a
problem with parameter estimation, and not a disagreement be-
tween the data sets, which clearly overlap (see Supplementary
Figs. 1 and 2).

Evaluating Predictions of Volume of Distribution
In Figure 4, we evaluate the HTTK predicted Vd (Pearce et al.,
2017a) against the values inferred from the in vivo experiments.
Chemicals are plotted by name to aid in identification of out-
liers. If the best model selected was a 2-compartment model,
we used the steady-state volume of distribution (sum of the 2-
compartment volumes) (Obach et al., 2008). In panel A, we ob-
serve a weak trend, with bisphenol A and ondansetron appearing

as obvious outliers. Our estimated Vd for bisphenol A is roughly a
10th of what has been observed in other studies (Doerge et al.,
2010; Yoo et al., 2000) indicating that measurement error may
have been a factor. A larger Vd for bisphenol A would be more
consistent with the predictions from HTTK.

Pearce et al. (2017a) calibrated the Schmitt (2008) method by
analyzing a data set of mostly pharmaceutical compounds and
using linear regression to account for tissue-specific prediction
error (e.g., bias). These calibrations therefore may be expected
to be more appropriate for pharmaceuticals than other chemi-
cals classes. When these calibrations are removed, as in panel B
of Figure 4, the MSE is reduced from 4.4 to 2.9. The range of pre-
dictions is observed to be broader, with many Vd predicted to be
greater than 10 l/kg bodyweight. Thus, it may be that the mostly

M
W

lo
gP

W
at

er
S

ol

N
eu

tr
al

.p
H

74

P
os

iti
ve

.p
H

74

N
eg

at
iv

e.
pH

74

C
lin

t

F
up

V
di

st

ke
lim

kg
ut

ab
s

F
bi

o

Cyclanilide
Perfluorooctanoic acid
Novaluron
Cyclosporin A
Propamocarb hydrochloride
S−Bioallethrin
Resmethrin
Permethrin
Triclosan
Phenytoin
Carbendazim
2,4−D
Pyrithiobac sodium
Valproic acid
Ibuprofen
Diclofenac
Tolbutamide
Hexobarbitone
Bisphenol A
Antipyrine
Phenacetin
Chloridazon
Imidacloprid
Simazine
Alprazolam
Midazolam
Chlorpyrifos
Fenarimol
Propyzamide.RTI
Propyzamide.NHEERL
Propyzamide.Joint
Diazinon−o−analog
Etoxazole
Boscalid
Carbaryl
Nilvadipine
Flufenacet
Alachlor
Dimethenamid
Bosentan
Imipramine
Bensulide.NHEERL
Bensulide.Joint
Bensulide.RTI
Imazalil
Ondansetron
Diltiazem
Metoprolol

−4 −2 0 2 4

Value

0
50

15
0

Color Key
and Histogram

C
ou

nt

Estimated from In Vivo Data

Figure 3. A “heatmap” of physico-chemical properties, in vitro TK parameters (Wetmore et al., 2013), and TK parameters estimated from in vivo plasma concentration.

Rows (chemicals) are clustered by Euclidean distance so that adjacent rows are more similar to each other. Each column (chemical properties) was scaled by the stan-

dard deviation of the column and the mean value was subtracted, such that a value of 0 corresponds to the mean and values of �1 or 1 correspond to values one stan-

dard deviation above or below the chemicals, respectively. In some cases, TK parameters could not be estimated (e.g., no oral data available for estimating Fbio and

kgutabs). Fraction of the compound that is neutral, positively, or negatively ionized at pH 7.4 is indicated by “neutral ph74,” “positive ph74,” and “negative ph74.” The bar

at the left-hand side indicates pharmaceuticals in gray and other chemicals in black.

WAMBAUGH ET AL. | 9

Downloaded from https://academic.oup.com/toxsci/advance-article-abstract/doi/10.1093/toxsci/kfy020/4827578
by Environmental Protection Agency Library user
on 23 March 2018

https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy020#supplementary-data
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy020#supplementary-data
Deleted Text: two
Deleted Text: two 
Deleted Text: tenth 
Deleted Text: L


pharmaceutical data set in Pearce et al. (2017a) is biased toward
chemicals with lower Vd than is observed for broader classes of
chemicals. Ideally, the Pearce et al. (2017a) calibrations might be
repeated using more chemicals with greater tissue partitioning.

Evaluating Predictions of Clearance
We next evaluate in vitro HTTK predictions of total clearance. In
Figure 5 we compare against the clearance estimated from
in vivo data (i.e., Vd * kelim). Parameter estimates for the more
likely empirical TK model (or non-compartmental estimates)
are used for each chemical. When analyzing pharmaceuticals
and nonpharmaceuticals separately, we observe some predic-
tive ability for both classes of chemicals. Most importantly, he-
patic metabolism-based HTTK methods are shown to
underestimate total clearance of nonpharmaceuticals more so
than they underestimate total clearance of pharmaceuticals,
pointing to a larger role for extra-hepatic metabolism in non-
pharmaceutical chemicals.

Evaluating Assumptions about Oral Bioavailability
In Figure 6, we examine the distribution of estimated absorption
rates. Previous IVIVE approaches have assumed that 1 l/h was a
sufficiently “fast” rate of absorption (kgutabs) usable for all chem-
icals (Wambaugh et al., 2015). We find that the average value for
kgutabs (approximately 44.5 l/h) is much faster than previously
assumed although the median value is only 2.2 l/h. It also is evi-
dent that there are a few chemicals with absorption rates signif-
icantly faster (max rate was cut off at 1000 l/h) or slower
(minimum of approximately 0.23 l/h) than average.

In our models, Fbio is an overall multiplier of oral dose, such
that a compound with Fbio¼ 0.1 has a tissue exposure a 10th
that of a compound with Fbio¼ 1. Therefore, predicting Fbio is
critical to IVIVE, especially for attempts to predict in vivo toxico-
logical effects from in vitro data. In panel A of Figure 7, we com-
pare predictions of Fbio as estimated using Gastroplus (Lukacova

et al., 2009) with the values we estimate from contrasting oral
and intravenous time course data. Unfortunately, we do not ob-
serve much concordance between model predictions and in vivo
estimated Fbio. In panel B of Figure 7, we show that the esti-
mates of Fbio ranged from 0.098 to 1 for pharmaceutical
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Figure 4. Comparison of measured volumes of distribution (Vd) with predictions based upon in vitro data and in silico methods (Pearce et al., 2017a; Schmitt, 2008). The

solid line in each panel indicates the identity line (1:1, perfect predictions). Chemicals can be identified by their chemical abbreviation given in Table 1.
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Figure 5. Comparison of the TK clearance estimated from the in vivo data with

the clearance predictions made using HTTK data. The more likely empirical TK

model (either 1 or 2 compartments, as in Figure 2) is selected for each chemical

using the AIC (Akaike, 1974). Estimated standard deviation is indicated by a ver-

tical line, and is often smaller than the plotted text. The solid line indicates the

identity line (1:1, perfect predictions), while the dotted and dashed lines indicate

the linear regression (log-scale) trend lines for pharmaceuticals and other chem-

icals, respectively. Chemicals can be identified by their chemical abbreviation

given in Table 1.
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compounds, but was observed to be as low as 0.00296 (imazalil)
for other compounds.

Evaluating Predictions of Steady-State Plasma Concentration
The estimated TK parameters can in turn be used to calculate
TK summary statistics that have been used for IVIVE of bioactiv-
ity assays, including Css (Ring et al., 2017; Rotroff et al., 2010;
Wetmore et al., 2012, 2013, 2014, 2015), Cmax (Sipes et al., 2017),
and AUC (Wambaugh et al., 2013). In Figure 8, we compare the
Css calculated using the in vivo-estimated clearance with in vitro-

based predictions for the Css that would result from a fixed infu-
sion dosing rate of 1 mg/kg bodyweight/day. These Css values
are used to infer an exposure that would cause plasma concen-
tration equal to in vitro concentrations that have been identified
as bioactive. Since we generally under-predict clearance, in
panel A of Figure 8 we see a pronounced tendency to overesti-
mate Css when using HTTK in vitro methods. The bias and pre-
dictive ability are similar to that found using heterogeneous
literature data for humans in Wambaugh et al. (2015).

In panel B of Figure 8, the in vivo measured Fbio is used to il-
lustrate the improvement possible if Fbio could be predicted ac-
curately. For the model predictions in panel A Fbio is assumed to
be 100%. In panel B, the in vivo measured Fbio is used to reduce
the amount of the oral dose absorbed in the 1-compartment
model, to illustrate the improvement possible if Fbio could be
predicted accurately. Accurate knowledge of Fbio would improve
the variance explained to an R2 of 0.71 and reduce the MSE of
the predictions.

Evaluating Predictions of HTTK Uncertainty
Bias in predicting Css can be accounted for in risk prioritization
if the degree of that bias can be predicted on a per chemical ba-
sis. HTTK methods do not always under-estimate clearance.
Wambaugh et al. (2015) developed a method for prediction of
HTTK-based Css biases, which indicated that many chemicals
should be within a factor of 3 of in vivo data, while most other
chemicals should be overestimated (i.e., health conservative for
reverse dosimetry). In Figure 9, we evaluate those predicted
biases. Chemicals were predicted to be in one of six categories,
five indicating the degree to which Css was expected to be over-
or under-estimated, and one indicating problematic aspects of
the chemical or assays that prevented the chemical from being
placed in the other five categories. The thick gray bars in
Figure 9 indicate where a chemical should appear to be
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Figure 7. In panel A, the observed fraction of oral dose absorbed from the gut is compared with predictions made using gastroplus (Simulations Plus, 2017). The solid

line indicates the identity line (1:1, perfect predictions). These fractions are distrusted from nearly 0 to effectively 100% (panel B). Chemicals can be identified by their

chemical abbreviation given in Table 1.
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consistent with its predicted error. We note that none of our
evaluation chemicals were predicted to be underestimated be-
tween 3.2 and 10 times so that bin is not present. The balanced
accuracy of the Wambaugh et al. (2015) method for the “on the
order” category was only 64%, and here we see that the method
tends to underestimate the degree to which in vitro HTTK meth-
ods overestimate Css.

Of the chemicals analyzed for which Css could be estimated
in vivo, the HTTK uncertainty predictions estimated that only al-
prazolam would be underestimated significantly. Four chemi-
cals in Figure 9 (the pharmaceuticals phenytoin and
tolbutamide, the perfluorinated surfactant PFOA, and the pesti-
cide diazinon) were observed to be underestimated. Diazinon
and tolbutamide were predicted to be “on the order” (within a
factor of 3) which was consistent with the amount of error ob-
served. Phenytoin was expected to be more than three times
overestimated but was actually on the order.

For the chemicals that were expected to be either “on the
order” (i.e., within 3.2� of the prediction) or slightly overesti-
mated (within 3.2 to 10� of the prediction) we do see some
chemicals correctly categorized, but most are in fact greatly
overestimated (>10� the prediction). All chemicals for which
the Wambaugh et al. (2015) method could not make predictions
(“problem” chemicals) has overestimated Css. As in Figure 8, the
bias toward over-prediction is a conservative error for reverse
dosimetry applications.

Evaluating Predictions of Maximum and Time-Integrated Plasma
Concentration
The maximum plasma concentration (Cmax) has also been used
for HTTK-based risk priority setting (Sipes et al., 2017). In
Figure 10, a single point is plotted comparing in vivo derived
Cmax with predicted Cmax for each combination of chemical,

dose amount, and dose route, either iv or oral (po) (all values for
Figs. 10 and 11 are provided in Supplementary Table 11, doi:
10.5061/dryad.32v7b). As in Figure 8, the model has been consid-
ered both with assumption of 100% absorbed (panel A) and the
in vivo estimated Fbio (panel B). In both panels of Figure 10, the 1-
compartment model is parameterized with the predicted vol-
ume of distribution and clearance, based upon in vitro measured
parameters. Accurate knowledge of Fbio would improve the vari-
ance explained from an R2 of 0.48 and MSE of 5 in panel A to an
R2 of 0.73 and MSE of 2.7 in panel B.

Similarly, in Figure 11, we evaluate our ability to predict
time-integrated plasma concentration (area under the curve or
AUC). Each plot point compares in vivo derived Cmax with pre-
dicted Cmax for each combination of chemical, dose amount,
and dose route, either iv or po. In panel A of Figure 11, the in vivo
calculated the 1-compartment model is parameterized with the
predicted volume of distribution and clearance, based upon
in vitro measured parameters. For the model predictions, Fbio is
assumed to be 100%. In panel B, the in vivo measured Fbio is used
to reduce the amount of the oral dose absorbed in the 1-com-
partment model, to illustrate the improvement possible if Fbio

could be predicted accurately. Accurate knowledge of Fbio would
improve the variance explained from an R2 of 0.62 in panel A to
an R2 of 0.75 in panel B.

DISCUSSION

New In Vivo TK Data for Non-Pharmaceutical Chemicals
Here we report on new, in vivo TK experiments in rat for 26 non-
pharmaceutical chemicals. The new data were collected from
two different laboratories (EPA NHEERL and RTI), with two over-
lapping chemicals (bensulide and propyzamide), which demon-
strated sufficient consistency to provide confidence in the
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Figure 8. Rat in vivo data were collected for diverse environmental chemicals to evaluate the predictive ability of HTTK, especially with respect to predicting steady-

state serum concentration (Css). Chemicals can be identified by their chemical abbreviation given in Table 1. The abbreviations are centered at the measured and pre-

dicted values. The solid line indicates the identity line (1:1, perfect predictions). In panel A, the 1-compartment model is parameterized with a predicted volume of dis-

tribution and clearance, based upon in vitro measured parameters. Fbio is assumed to be 100%. In panel B, the in vivo measured Fbio is used to reduce the amount of the

oral dose absorbed in the 1-compartment model, to illustrate the improvement possible if Fbio could be predicted accurately.
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standardized TK experimental protocol that was used by both
laboratories. We applied a uniform statistical analysis approach
to estimate relevant TK parameters (e.g., volume of distribution,
rate of elimination) for both these chemicals and in vivo rat data
from an additional 19 chemicals from previously published
studies. For all chemicals there were rat-specific HTTK data
allowing direct evaluation of IVIVE for rat. We evaluated 4 key
issues in IVIVE: oral bioavailability, underestimation of clear-
ance, volume of distribution, and expected uncertainty (i.e., pre-
dictive error).

A systematic curve fitting approach was used to analyze the
concentration time-course data for each chemical. Each chemi-
cal required development of a separate analytical chemistry
method. These analytical chemistry methods are more or less
accurate depending upon the ability to distinguish mass

spectrometry features corresponding to the test chemical from
the significant background due to the plasma itself. Further,
since a standardized test protocol with the same time points for
each chemical was used, those chemicals with clearance that is
either too rapid or too slow to be observed at these points are
expected to be ill-characterized. Finally, we note that it was of
particular methodological importance to properly handle data
that were below the limit of quantitation using censored likeli-
hoods in order to achieve proper curve fits.

Bioavailability experiments, either in vivo or potentially
in vitro, are clearly needed to provide data to allow better predic-
tion of Fbio. Pharmaceutical chemicals are typically designed to
be well absorbed (Lipinski, 2004) and the default Fbio used for
previous reverse dosimetry studies has been 100% (Wetmore
et al., 2015). Here Fbio was estimated to range from 0.1 to 1 for
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Figure 9. Evaluation of Wambaugh et al. (2015) classification scheme for predicting errors made when using HTTK data to predict in vivo steady-state plasma concentra-

tion (Css). Chemicals were placed into categories, depending upon the size of the error. “On the order” represented the best case, where errors were within 3.2 times

over or under the true value. Some chemicals were determined to be problematic due to limitations in the HTTK methods (e.g., plasma protein binding estimation) or

failure to come to steady state. Wherever the chemical names overlap the vertical, gray bands, the observed errors are consistent with predicted error. Chemicals can

be identified by their chemical abbreviation given in Table 1.
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Figure 10. Evaluation of the ability of in vitro HTTK data, coupled with a 1-compartment model, to predict important TK statistics like the maximum plasma concentra-

tion (Cmax) for characterizing tissue exposure. A single point is plotted for each combination of chemical, dose amount, and dose route, either intravenous (iv) or per

oral (po). In panel A, the 1-compartment model is parameterized with a predicted volume of distribution and clearance, based upon in vitro measured parameters. Fbio

is assumed to be 100%. In panel B, the in vivo measured Fbio is used to reduce the amount of the oral dose absorbed in the 1-compartment model, to illustrate the im-

provement possible if Fbio could be predicted accurately.
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Figure 11. Evaluation of predictions for the time-integrated plasma concentration (i.e., AUC). A single point is plotted for each combination of chemical, dose amount,

and dose route, either intravenous (iv) or per oral (po). In panel A, the 1-compartment model is parameterized with a predicted volume of distribution and clearance,

based upon in vitro measured parameters. Fbio is assumed to be 100%. In panel B, the in vivo measured Fbio is used to reduce the amount of the oral dose absorbed in the

1-compartment model, to illustrate the improvement possible if Fbio could be predicted accurately. The solid line in each panel indicates the identity line (1:1, perfect

predictions).
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pharmaceutical compounds, but was observed to be as low as
0.003 for other compounds. We found that knowledge of Fbio,
which includes fraction absorbed from the gut and first-pass
metabolism, would improve overall ability to predict TK; that is,
in vitro HTTK predictions of Css, AUC, and Cmax improved when
in vivo measured Fbio values were used. Tools developed to pre-
dict the absorption of pharmaceuticals (Lukacova et al., 2009)
were not able to predict Fbio for non-pharmaceutical chemicals.
However, these tools were used in the most basic functionality
(i.e., prediction from physico-chemical properties and dose
alone). Additional data, such as in vitro measures of membrane
transport (e.g., CACO2, Hubatsch et al., 2007) are known to en-
hance the prediction of bioavailability of pharmaceuticals
(Camenisch, 2016). A revised analytical chemistry protocol for
rapid in vivo TK studies that separates samples to treat and po-
tentially unconjugate rapid metabolites may produce a better
estimate of bioavailability in some cases (e.g., bisphenol A,
Doerge et al., 2010).

The absorption rates (kgutabs) reported here are especially
valuable since no in silico tool exists for predicting absorption
rate. The median rate observed was faster than the default as-
sumption of 1 l/h used in the HTTK R package, and has been
adopted in the new version 1.8 of that software. Additional
analysis of the relationship between kgutabs, Fbio, and physico-
chemical properties may eventually yield in silico relationships
to allow categorization of chemicals if not outright prediction of
these quantities, but additional in vivo data may first need to be
either mined from the scientific literature or collected from new
experiments in order to allow sufficient statistical analysis.

In vitro hepatocyte metabolism methods are well known to
underestimate total clearance (Brown et al., 2007; Hallifax and
Houston, 2009; Wetmore et al., 2012, 2015), leading HTTK meth-
ods to over-predict quantities such as Css (Wambaugh et al.,
2015; Yoon et al., 2014). We observed that the underestimation
of total clearance appears more pronounced for non-
pharmaceutical chemicals. Underestimation of clearance could
be due to inadequacies of in vitro hepatocyte systems for repro-
ducing hepatic clearance, inappropriate model assumptions
(e.g., restrictive hepatic metabolism), or neglected biological
mechanisms such as extrahepatic metabolism, biliary clear-
ance, or active transport in the kidneys (as in the hypothesized
saturable renal resorption of some perfluorinated fatty acid
analogs (Andersen et al., 2006)).

HTTK methods rely upon in vitro methodologies that are sub-
ject to the well-known limitations of in vitro assays with respect
to chemical partitioning (Groothuis et al., 2015; Gulden and
Seibert, 2003). Often the nominal concentration (say 1 uM)
might be expected to differ from the actual free concentration
that is being assayed due to factors such as chemical binding to
the walls of the in vitro test well (Armitage et al., 2014; Fischer
et al., 2017). However, both the hepatic clearance and plasma
protein binding assays are conducted in a way to minimize
some of these problems since only the relative concentrations
with respect to time is needed for clearance and the relative
concentration between wells with and without plasma is
needed for plasma binding (Shibata et al., 2002; Waters et al.,
2008). For the clearance assay, less than nominal chemical con-
centration would act to reduce the impact of potential meta-
bolic saturation, meaning that the nominal concentration
in vivo might produce a slower metabolism rate. For the plasma
binding assay, if non-plasma binding prevents the chemical
from truly coming to equilibrium between the free and plasma
components then plasma binding might be overestimated,
which may act to underestimate predicted clearance.

We found that the chemical plasma concentration as a func-
tion of time for many of the chemicals were better described us-
ing a bi-phasic (i.e., 2-compartment) model with pronounced
distribution and elimination phases. The terminal (elimination)
phase of a bi-phasic model is slower than the distribution phase
(O’Flaherty, 1981). Thus, past estimates of in vivo clearance may
in fact be over-estimates, confounded by distribution to tissues.

Statistically guided approaches rely upon large data sets,
and even the 45 chemicals here are likely insufficient to allow
the association of chemical structure features with TK proper-
ties (Golbraikh et al., 2014). There are many other data sets that
exist, for instance those that are reported only as graphics (i.e.,
figures) in the scientific literature. Obtaining these data in a for-
mat that allows analysis should improve statistical modeling.
Further, we observed in the case of bisphenol A that it might be
desirable to supplement the data generated here with measure-
ments from experiments that focused on a single chemical and
its metabolites (Doerge et al., 2010; Yoo et al., 2000). If the set of
chemicals with plasma concentration vs. time data can be ex-
panded, using both novel and/or literature data, then the stan-
dardized analysis tools developed here can be applied to
develop a larger data set for further analysis. Any concentration
vs. time data could be distributed as part of the R package “httk”
and made available to other public databases.

The Predictive Ability of HTTK Methods
We have used a minimal (6–8 animal) study design to generate
new in vivo TK studies that, along with literature data, allow
evaluation of several aspects of HTTK-based IVIVE. While we
identify areas for improvement, including prediction of bio-
availability, we find that it is possible to predict some in vivo TK
parameters (Vd) and statistics (AUC, Cmax, and Css) using a com-
bination of in vitro assays and mathematical models. Many pre-
dictions were greatly improved when measured data on the
fraction bioavailable was available.

The MSE indicated that AUC could be predicted better than
Cmax, which could be predicted better than Css. A likely explana-
tion is that while the Css used here is independent of dose be-
cause it is calculated for all chemicals at the same exposure rate
of 1 mg/kg BW/day, both Cmax and AUC depend upon dose. For
the available evaluation data, the linear dose models are appar-
ently sufficient to explain some dose-related differences be-
tween treatments. We note that while we have evaluated
summary statistics, it might also be possible to compare
chemical-specific goodness of fit for the entire concentration
time course.

We find that ability to predict total (whole body) clearance
from hepatic metabolism and passive renal excretion is rela-
tively weak. We observed that the total clearance may be
under-estimated more for nonpharmaceuticals than for phar-
maceuticals, indicating a greater need to characterize extra-
hepatic metabolism for those compounds (Wilk-Zasadna et al.,
2015). We have used in vitro metabolism data from experiments
conducted at 1 mM with the assumption that metabolism is lin-
ear (i.e., not saturated) at that concentration. If metabolism is
actually saturated in vitro and real world exposures lead to lower
concentrations than were tested, then the in vivo clearance
would be higher and Css would be lower. This underestimation
would be another source of conservative bias.

Although HTTK is uncertain, if that uncertainty can be quan-
tified and predicted then HTTK may be suitable for many appli-
cations. Past reverse dosimetry work for risk prioritizations
have argued that the tendency of HTTK to bias toward the over-
estimation of Css is a conservative error in that it reduces the
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predicted margin between potentially hazardous doses and pos-
sible exposure (Ring et al., 2017; Rotroff et al., 2010; Thomas et al.,
2013; Tonnelier et al., 2012; Wetmore et al., 2012, 2015). If, for a
given chemical, Css is not overestimated then this conservative
bias is not present, making careful characterization of error in
HTTK predictions even more important. The Wambaugh et al.

(2015) method for predicting HTTK uncertainty appears to be
conservatively biased—the degree of overestimation (predicted
Css divided by in vivo Css) for most chemicals is larger than pre-
dicted. Among all the chemicals examined, only two had
smaller errors than predicted. It is important to note that over-
estimation of tissue concentrations is only a conservative bias
for reverse dosimetry applications where a dose capable of
causing a given tissue concentration is back-calculated. If TK
predictions of tissue concentrations associated with a dose

known to cause toxicity are overestimates (i.e., using forward
dosimetry), then the chemical is in fact more potent than esti-
mated (Bell et al., 2018). Eventually new machine learning mod-
els (Wambaugh et al., 2015) and other classification systems
(Camenisch, 2016) may need to be revised using data from non-
pharmaceutical chemicals.

Finally, we found that predictions of volume of distribution
(Vd) calibrated using data on pharmaceutical chemicals were
not effective for more diverse chemicals. Most of the com-
pounds examined in Pearce et al. (2017a) were pharmaceuticals,
and it may be that there are aspects of chemical partitioning
that are not present among pharmaceuticals that need to be
better considered when predicting partitioning of other chemi-
cal classes.

HTTK methods as they stand appear appropriate for predict-
ing TK in the absence of other data, as is the case for thousands
of chemicals. IVIVE methods may enable the use of high
throughput in vitro toxicity screening to prioritize chemicals on
the basis of risk posed to human health (Thomas et al., 2013).
IVIVE has more typically been performed on a single chemical
basis using detailed physiologically based TK (PBTK) models
with chemical-specific insight into toxicodynamics (Rostami-

Hodjegan, 2012; Yoon et al., 2012). If higher throughput methods
for TK can be used with confidence (Wetmore, 2015), then
chemicals might be screened in a cost-effective and efficient
manner that also significantly reduces animal testing (Basketter
et al., 2012; Bessems et al., 2014; Coecke et al., 2013).

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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